Biznes statistikası

36 saat
AZN
Azərbaycan

Proqramın qısa məzmunu

Module 1: Introduction to Statistics

  • Introduction to Business Statistics
  • Different Types of date for business Statistics
  • Basic Statistical Concepts

 

Module 2: R Fundamentals for Analyzing and Interpret Row Data

  • Install R and R Studio and engage in a basic R session 
  • Be able to read in data and write out data files from various sources 
  • Create and execute their own user-defined functions in an R session 
  • Understand the characteristics of different data types and structures in R
  • Sort, select, filter, subset, and manipulate tables of data in R 
  • Understand how to use the apply() family of functions to execute various actions against different R data structures
  • Know how to use reshaping and recoding “short cuts” for changing data types and for rearranging data structures.
  • Basic visualization and share reports in R

 

Module 3: Applying Descriptive and Diagnostic Statistics in Real Business

  • Visualizing and Exploring Data (EDA) 
    • Chart absolute frequency, relative frequency, cumulative absolute frequency and cumulative relative frequency histograms, etc.
  • Descriptive Statistical Measures for Business
    • Estimate sample skewness, sample kurtosis frequency distribution shape measures and samples correlation, samples covariance association measures, etc.
  • Probability Distributions 
    • Evaluate probability distribution goodness of fit through quantile-quantile plots and normality test, etc.
  • Sampling and Estimation for Decision Making
    • Estimate population mean and population proportion confidence intervals assuming known or unknown population variance, etc.
  • Statistical Inference for Data Mining
    • Capstone project from Real Business Environment

 

Module 4: Statistical Decision Making under Uncertainty for Business

  • Trendlines and Regression Analysis with Data
    • with real business cases
  • Forecasting Techniques for Business
    • with real business cases
  • Monte Carlo Simulation and Risk Analysis Process
    • with real business cases
  • Statistical Decision Analysis for Driving Consumer Experience.
    • with real business cases
  • Statistical Clustering Analysis for Customer Behavioral Segmentation 
    • with real business cases​

 

Kamal Mirzəyev
Kamal Mirzəyev

Təlimçi

Təhsili:

  • 2016 – 2017, Università degli Studi dell’Aquila, Dövlət idarəetməsi, Bakalavr, ERASMUS+ KA1
  • 2013 – 2017, Qafqaz Universiteti, Dövlət idarəetməsi, Bakalavr
  • 2018 – 2020, Azərbaycan Dövlət İqtisad Universiteti, Strateji idarəetmə, Maqistr
  • 2021 – 2024, Azərbaycan Dövlət İqtisad Universiteti, İqtisadiyyat, Doktorantura

 

İş təcrübəsi:

  • 2015 – 2017, QSS Analytics, SPSS üztə təlimçi, Data Analitiki
  • 2018 – 2019, 166 Yükdaşıma və Logistika, Maliyyə hesabatlığı analitiki, Excel və SPSS təlimçisi, Baş Data Analitiki
  • 2019, Alliance Logistics, Statistika və Hesabat bölməsinin rəhbəri
  • 2019 – hazırda, Data SoCool, Data Modelləşmə və Hesabatlıq üzrə təlimçi, Satışlarda
  • Data Analitikası və Proqnozlaşdırıcı Marketing təlimçisi
  • 2020 – hazırda, UNEC Business School, Köməkçi lector
  • 2019 – hazırda, Kapital Bank ASC, Data Analitikası departamenti, Data Modelləşdirilməsi üzrə Menecer

 

Beynəlxalq sertifikatları:

  • 2019, QueBIT Consulting, IBM SPSS Modeler: Mastering and Tuning Decision Trees
  • 2019, Microsoft, Analyzing and Visualizing Data with Power BI, Analyzing Big Data with Microsoft R
  • 2019, Harvard University, Data Science: R Basics, Machine Learning
  • 2019, University of Colorado Boulder, Predictive Modeling and Analytics
  • 2019, IBM, Machine Learning with R – Level 1
  • 2021, LinkedIn, Learning Data Governance

 

Apardığı təlim mövzuları:

  • Business statistikası